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Microorganisms are the most diverse and abundant life forms

on Earth. Yet, in many environments, only 0.1–1% of them have

been cultivated greatly hindering our understanding of the

microbial world. However, today cultivation is no longer a

requirement for gaining access to information from the

uncultivated majority. New genomic information from

metagenomics and single cell genomics has provided insights

into microbial metabolic cooperation and dependence,

generating new avenues for cultivation efforts. Here we

summarize recent advances from uncultivated phyla and

discuss how this knowledge has influenced our understanding

of the topology of the tree of life and metabolic diversity.
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Introduction
Today at least 89 bacterial and 20 archaeal phyla are

recognized by small subunit ribosomal RNA databases,

although the true phyla count is certainly higher

[1,2,3��,4,5�] and could range up to 1,500 bacterial

phyla [6]. Historically, a majority of what we understood

about microbial life was based on information gleaned

exclusively from cultivated organisms [2]. Thus, physi-

ologic and genomic information was confined to pure

cultures and dominated by representation of the Pro-

teobacteria, Firmicutes, Actinobacteria, and Bacteroi-

detes within the Bacteria, and to methanogen and

halotolerant members of the Euryarchaeota within

the Archaea [2].
www.sciencedirect.com 
The first realizations of just how diverse and unexplored

microorganisms are came from analyzing microbial small

subunit ribosomal RNA (SSU or 16S rRNA) gene sequences

directly from environmental samples [7]. These analyses

revealed that less than half of the known microbial phyla

contained a single cultivated representative. Phyla com-

posed exclusively of uncultured representatives are referred

to as Candidate Phyla (CP). Borrowing language from

astronomy, microbiologists operationally define these CP

as microbial dark matter, because these organisms likely

account for a large portion of the Earth’s biomass and

biodiversity, yet their basic metabolic and ecological prop-

erties are not known. This uncultivated majority represents

a grand challenge to the scientific community and until we

solve the mysteries of the CP, our knowledge of the micro-

bial world around us is profoundly skewed by what we have

cultivated in the laboratory [8�].

In the past five years, scientists have addressed missing

information from uncultured organisms through advances

in genomic sequencing technologies. Microbial genomes

can now be directly sequenced from the environment using

metagenomics and single cell genomics, however, these

technologies contain their own strengths and challenges.

Using metagenomics, DNA is sequenced directly from the

environment facilitating the study of organisms in the

context of their community and chemical conditions. After

shotgun sequencing and assembly, this approach results in

genomic fragments from different organisms, which can be

binned into separate genomes using shared features (abun-

dance, codon usage, tetranucleotide, homology). This

method today, can result in complete, closed genomes

[9]. However, binning does not always resolve strains,

representing a composite of genomic fragments from sep-

arate clonal populations [8�]. In contrast to the bulk se-

quencing of the entire community, single cell genomics

involves physically separating a single cell from the envi-

ronment, lysing the cell, and amplifying and sequencing

the genomic DNA. Although this procedure does not suffer

from ambiguity about the number of organisms contribut-

ing the DNA, the amplification step biases the genomic

coverage, often resulting in fragmented, less complete

genomes. Metagenomics and single cell genomics are

therefore complementary and together have contributed

new insights into uncultivated lineages.

Insights from microbial dark matter genomes

Genome-enabled approaches offer metabolic predictions

for previously enigmatic CP organisms. In 2012, Jillian

Banfield and colleagues used metagenomics to reconstruct
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49 draft genomes from at least five bacterial CP that

lacked prior genomic information [10]. A year later, the

rapid development of metagenomic sequencing and

analyses yielded the first complete, closed genomes

from these same or closely related bacterial CP lineages

[11,12]. In this same year, Tanja Woyke and colleagues

used single cell genomics to target microbial dark matter

lineages and genomically sampled at least twenty bac-

terial and archaeal phyla composed exclusively of un-

cultivated members for the first time [2].

Recently, the genomic sampling of uncultivated organ-

isms has increased dramatically. In 2015, Brown et al.
expanded the genomic sampling of earlier identified CP

to reveal a bacterial radiation that is estimated to account

for at least 15% of the known bacterial diversity [3��].
This radiation was initially composed entirely of unculti-

vated members and was hence referred to as the Candi-

date Phyla Radiation (CPR). Also in this same year,

Castelle et al. reconstructed 151 archaeal CP genomes,

expanding the sampling of existing CP and resolving two

new phyla, each with nearly fifty genomes sampled [1].

While these aforementioned studies initially contributed

large numbers of CP genomes and were foundational in

the development of this field, many other researchers

have also discovered new phyla and contributed to our

understanding of the phylogenetic and metabolic diver-

sity within existing CP [8�,13,14��,15��,16–18,19�,20,21].

Given the pace at which CP genomes are being se-

quenced, it is no surprise that genomic databases need

to be continually updated to remain contemporary. To

highlight what is commonly accessible in genomic data-

bases, for each archaeal and bacterial phylum that has a

well-curated genomic representative we summarized

the relative contribution of isolate genomes to total

genomes sampled [22] (Figure 1). The sampling from

Bacteria (black), bacterial CPR (blue), and Archaea

(orange) are distinguished by font colour. The relative

contribution of genomes from uncultivated members,

denoted in black, were contributed via single cell ge-

nomic and metagenomic approaches. According to this

database analyses, a third of the bacterial and archaeal

phyla genomically sampled in databases lack a single

isolated representative.

The data included in Figure 1, while highlighting the

contribution of microbial dark matter to genomic space, is

a gross underestimate. For instance, CP genomes from

the Archaea [1,13,14��,15��,16], and many of the bacterial

CPR are missing [3��,5�]. Specifically, the Parcubacteria

(OD1) is shown as a phylum having 14 genomes, but due

to the extensive genomic sampling last year of over

400 new Parcubacterial genomes, this phylum is now

recognized as a bacterial superphylum [3��,5�]. Today

several CP phyla (e.g. Yanofskybacteria of the Parcubac-

teria with 84 draft genomes) contain as much genomic
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sampling as many well-studied phyla that contain cultivat-

ed organisms. Moreover, with increased genomic sam-

pling, taxonomic boundaries and nomenclature are

constantly being reassessed, albeit with some controversy.

For instance, the Patesibacteria (Figure 1), a proposed

superphylum that included three phyla, is now reorganized

and renamed to the CPR which currently includes two

superphyla and many more phyla. This and other instances

outlined in the section below, exemplifies the taxonomic

upheaval and points of contention currently ongoing in the

field of microbiology. Below we identify three new discov-

eries illustrating how information from CP genomes has

altered our understanding of the microbial world.

i) Breaking branches of the tree of life

Based on classification by Woese and colleagues, ribo-

somal RNA resolved Earth’s biodiversity into a three-

domain model where Bacteria, Archaea, and Eukarya

each represented monophyletic groups [23,24]. This

three-domain model has arguably stood the test of time,

until being challenged by recent CP genomic sampling

[25,26]. Based on phylogenomic analyses of new and

existing archaeal phyla, Williams and Embley proposed

a two-domain model consistent with the ‘eocyte’ hypoth-

esis [26], where eukaryotes originated from within the

archaeal radiation [27]. This interpretation is at odds with

the three-domain model based on rRNA gene sequences

and membrane lipid content, which separates the eukary-

otic and archaeal lines prior to the archaeal radiation [28].

Further instability in the three-domain theory emerged

upon the discovery of several reconstructed archaeal gen-

omes from a marine sediment metagenome [14��]. These

genomes represented members of a single phylum, and

were named Lokiarcheaota after the 3,000 m deep marine

hydrothermal vent system, Loki’s Castle, where the sam-

ples originated [29]. Based on concatenated phylogenetic

marker proteins, the authors proposed that Lokiarchaeota

were the most closely related prokaryotic lineage to the

eukaryotes. Further analyses revealed the Lokiarchaeota

genomes contained several genes previously thought to

define unique aspects of eukaryotic biology [26]. This

proposed relationship with eukaryotes (where eukaryotes

are sister to or fall within archaeal domain) is not without

contention, as inferences from concatenated gene trees

using composite metagenomic information are controver-

sial [30]. Additionally, 16S rRNA genes assign the

Lokiarchaeota to the known environmental ‘Marine Ben-

thic Group B’, a monophyletic collection of archaeal rRNA

sequences that lack a clear association with eukaryotes.

More recently, Hug et al. summarized the impact of single

cell and metagenomic sampling on our current under-

standing of the tree of life [5�]. This study phylogeneti-

cally analyzed 3,083 genomes including at least one

representative from all genera for which high quality

genomes exist. According to these analyses approximately
www.sciencedirect.com
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Figure 1
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50% of Archaea, 40% of the non-CPR bacterial phyla, and

97% of the CPR bacterial phyla contain uncultivated

members, illustrating that bacterial and archaeal phyla

without a single cultivated representative clearly com-

prise the majority of life’s current diversity.

Similar to the Lokiarchaoata analyses, this study reiterated

the discrepancy between phylogenies constructed from

concatenated marker proteins and those from small subunit

(SSU) rRNA. For instance, the CPR appear deep branch-

ing by a concatenation of 16 ribosomal proteins, but not in

the 16S rRNA gene phylogeny [5�]. The position of the

CPR as early emerging only on the ribosomal protein tree

raises the question as to whether this topology is an artifact

from fast evolving symbiont genomes. Additionally, this

study reiterates the controversy between the two and three

domain models of life. Concatenated ribosomal proteins

recapitulate the two domain model, with the Eukarya

branching within the TACK superphylum, while this

placement is not supported by the SSU rRNA gene phy-

logeny. Future metagenomic and single cell genomic

investigations promise to add missing foliage to the tree

of life, and along with the use of additional phylogenetic

markers may further resolve the ancestral relationship

between Archaea and Eukarya.

ii) Unexpected metabolisms in new phylogenetic places

16S rRNA gene sequence surveys of anoxic marine and

terrestrial subsurface environments are often dominated

by a group of deeply branching archaea, formerly called

the Miscellaneous Crenarchaeotal Group [31], or Marine

Group 1.3 [32]. This group has been renamed Bath-

yarchaeota, based on its discovery in deep-sea environ-

ments [33], but has also been found in a wide range of

terrestrial environments, including aquifers [1] and coal

bed methane wells [15��]. The diversity of 16S rRNA

genes within the Bathyarchaeota is befitting of a phylum,

with at least 17 subgroups identified, suggesting consid-

erable ecophysiological divergence [34].

The first genome from Bathyarchaeota, obtained from ma-

rine sediment, contained the capacity for protein fermenta-

tion, a well-studied metabolism in Bacteria never before

seen in non-extremophilic Archaea [17]. Twelve additional

genomes now available from eight Bathyarchaeota sub-

groups [18,35] suggest other metabolisms not commonly

associated with Archaea, such as homoacetogenesis via a

Wood-Ljungdahl pathway [18,35]. Additionally, Gene
(Figure 1 Legend) Depiction of uncultivated bacterial and archaeal genom

present in the JGI Gold database (Dec. 17, 2015). The percentage of geno

purple, while the percentage of high quality genomes from uncultivated org

a part of Bacteria (black), bacterial CPR (blue) identified by Hug et al. (201

the number of genomes in each phyla (from 100 to 10,000). The designate

on the left (DPANN, Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nan

Aigarchaeota, Crenarchaota, Korarchaeota; PB, Patesibacteria; PVC, Plac

Bacteroidetes) [2].
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Tyson and colleagues recently used metagenomics to re-

construct two near-complete Bathyarchaeota genomes from

coal bed fluids and discovered the capacity for methane

cycling [15��]. These genomes had complete methanogenic

pathways, including a divergent homologue for the key

enzyme in methanogenesis and anaerobic methanotrophy.

This key enzyme, methyl coenzyme M reductase (Mcr), has

never been identified outside the Euryarchaeota phylum in

the Archaea [15��,36]. It is likely that other microbial

candidate phyla will yield similar metabolic novelty.

iii) Small genomes and metabolic interdependencies are

prevalent

Today �35 genomically sampled phyla make up the

CPR, with all phyla except one lacking a single cultivated

representative [1,5�]. This radiation includes two super-

phyla Parcubacteria (OD1) and Microgenomates (OP11),

that each contain multiple phyla within. Additionally the

CPR include many separate phyla including the Peregri-

nibacteria (PER), Dojkabacteria (WS6), Katanobacteria

(WWE3), Berkelbacteria, Saccharibacteria (TM7), Graci-

libacteria (BD1-5), Absconditabacteria (SR1), Kazan phyla,

as well as three previously unrecognised lineages (CPR 1,

2, 3) (Figure 2) [3��]. Besides adding new branches to

bacterial tree of life, CPR genomic analyses have revealed

information on cellular information processing, fermenta-

tive metabolisms, and host associated lifestyles.

Analyses of CPR genomes have revealed unusual protein

synthesis machinery common to other bacterial phyla.

For instance, some near-complete CPR genomes are

missing ribosomal and biogenesis factors previously con-

sidered universal in bacteria [3��]. Another feature

reported in many CPR [3��], and in some endosymbionts

[37,38], is the presence of self-splicing introns and pro-

teins encoded in the 16S rRNA gene [38,39]. These

introns varied in length (up to 3.861 bp), position (one

complete Microgenomates genome had 4 different inser-

tions), and were not maintained in transcribed rRNA.

Moreover, it was shown that at least 50% of the CPR

phyla have divergent 16S rRNA gene sequences and fail

to amplify using standard universal bacterial primers

(515F and 806R) [3��].

Beyond unusual ribosomes, members of the CPR also use

alternative genetic codes. In members of the Abscondita-

bacteria and Gracilibacteria phyla, the UGA stop codon is

reassigned as glycine [11,19�,40–42], a finding confirmed
es assigned to isolate and uncultivated organisms in each phylum

mes within each phylum with an isolated organism is represented in

anisms is in black. Font colour depicts whether the phyla is currently

6), or Archaea (orange) [5�]. The circle next to each phylum represents

d super phyla proposed originally by Rinke et al. (2013) are indicated

ohaloarchaeota, Nanoarchaeota; TACK, Thaumarchaeota,

tomycetes Verrucomicrobia Chlamydia; FCB, Fibrobacteres, Chlorobi,
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Figure 2
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Analyses of glycoside hydrolases from CPR and TM6 genomes. The relative phylogenetic position is based on a 16S rRNA gene maximum

likelihood tree previously published [3��]. Carbohydrate active enzymes from CPR and TM6 genomes were identified (http://ggkbase.berkeley.edu/

CPR-complete-draft/organisms). For the most prevalent enzymes across the dataset, the gene annotation and corresponding PFAM number are

displayed, with coloring indicating the putative carbon substrate (yellow is amylose, green is cellulose, purple is chitin, orange is hemicellulose,

and blue is lignin). The total number of genomes included in this analyses from each phylum is displayed on each node, while the pie chart

represents the percentage of genomes in each phylum that have annotated genes within each PFAM category.
by proteomics [41]. In contrast to alternate coding in

symbiotic Alphaproteobacteria and mitochondria where

UGA encodes tryptophan, these lineages do not appear

to use a single tRNA with wobble pairing to accommodate

the additional glycine codon, but rather have an additional
www.sciencedirect.com 
tRNAGly
UGA [11]. While not currently known, UGA recod-

ing for glycine could be a mechanism for reducing GC

content [11] or ensuring genetic perseverance by decreas-

ing horizontal gene transfer rates to maintain genomic

innovation [19�].
Current Opinion in Microbiology 2016, 31:217–226
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The inferred metabolic capabilities of CPR genomes

sampled to date are limited. Based on recognizable genes

these bacteria appear to be obligately fermentative anae-

robes without evidence for aerobic or anaerobic respira-

tion. Recent analyses of Parcubacterial genomes from

aerobic habitats have identified genes that suggest the

capability for using O2 as a terminal electron acceptor, but

the lack of other required electron transport chain pro-

teins leave the functional role for these enzymes uncer-

tain [43]. Furthermore, to examine the capacity for

hydrogen generation and consumption we reanalysed

the available CPR genomes from Brown et al. [3��] and

recovered 110 full-length NiFe hydrogenases that formed

three new monophyletic groups within the 3b hydroge-

nases. Consistent with a fermentative metabolism, these

hydrogenases are proposed to play critical roles in the

disposal of reducing equivalents in CPR organisms. We

also analyzed near-complete CPR and TM6 genomes for

carbohydrate active enzymes (CAZy) [44] (Figure 2). Our

analyses revealed enzymes for xylose, a common hemicel-

lulose backbone sugar, and lignin degradation were the

most commonly detected, while cellulose degradation was

unevenly distributed phylogenetically. These findings

support inferences from a variety of ecosystems that

CPR organisms likely play critical roles in anoxic carbon

transformations and hydrogen generation [3��,11,43,45,46].

One of the most remarkable features of many CPR genomes

is the small genome sizes (often <1 Mb). These genomes

are as small or smaller than known free-living bacteria, on

par with many obligate endosymbionts [8�]. With the

exception of Peregrinibacteria, which have the capacity

for nucleotide synthesis [46], this genome reduction is
Figure 3

(a) 

Cryo-TEM images (2D) documenting morphology and size of ultra-small bac

distinct S-layer. Pilli-like structures are clearly discernible: numerous radiatin

morphological features are consistent with genomic analyses [3��,10]. (b) Po

adjacent bacterium (only part of the bacterium shown). Previously published
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at least in part because of a lack of biosynthesis pathways

for nucleotides, lipids, and most amino acids [3��,11,

20,21,42,46]. This auxotrophy suggests that these organisms

may be dependent on one or more members of the sur-

rounding community for cellular metabolites.

Based on inferences that small sized genomes often corre-

sponded to small cellular sizes, the same environment

where CPR were first genomically identified was resampled

using a smaller sized filter (0.1 mm). Groundwater that

passed through a 0.2-mm filter contained almost exclusively

CPR, and cryogenic transmission microscopy revealed ultra

small cells at the lower size limit for life [46,47] (Figure 3).

Consistent with metagenomic predictions [10,11], cells

lacked a gram-negative cell membrane, had a distinct S-

layer, and expressed abundant pili, a feature which may be

necessary for interacting with other organisms or the envi-

ronment via adhesion to extracellular surfaces.

Small genomes on the scale of the CPR have been

observed with two distinct microbial lifestyles. These

include either (i) streamlined, yet free-living, with a

limited metabolic repertoire or (ii) host associated often

lacking biosynthetic genes. Compared to the model of

SAR11, genome-streamlining evidence (e.g. codon den-

sity and pseudogene content) in CPR genomes was not

strong [16,48]. Alternatively, many genomic studies have

suggested that CPR and other CP with small genomes are

host-dependent [3��,5�,11,20,21,49��]. Microscopy and

cultivation have been used to validate some of these

genome hypotheses [49��,50]. For instance, consistent

with separate metagenomic claims [11], microscopic evi-

dence demonstrated that Parcubacterial CPR cells were
(b)

Current Opinion in Microbiology

terial candidate phyla. (a) The cell envelope includes a remarkable and

g pili-like structures cover the surface of the cell. Notably

lar pili-like structures occur on the cell, apparently connecting it to an

 in Luef et al. [47].
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ectosymbiotic with algal endosymbionts localized within

a ciliate [50].

Outside the CPR, the bacterial candidate phylum TM6,

which is also comprised of small genomes with limited

metabolic capacity, was inferred from genomics to be

reliant on an amoebal host [27,47]. Additionally, similar

trends of small genomes and sparse metabolisms were

also reported for many archaeal CP genomes [1]. Togeth-

er these findings of auxotrophy and host association hint

that a cooperative or dependent metabolism may likely

be much more widespread across the tree of life.

Illuminating gene functional annotation within CP

genomes

The inferred metabolisms discussed above were depen-

dent on drawing similarities between distant gene homo-

logs in the CPR and well-characterized genes from

phylogenetically distinct isolated organisms. However,

given the phylogenetic divergence and unusual environ-

ments some CP genomes were reconstructed from, it is

also possible these uncultivated representatives interact

with the environment in new ways, containing proteins

with currently unknown functions. Since existing meth-

ods of genome analyses rely on annotations largely based

upon cultivated organisms, gene functionality assign-

ments could be missed due to sequence divergence or

misannotation. Recent work, however, has begun to un-

ravel the function of CP proteins and their contribution to

the overall physiology of these lineages.

Metagenomic studies recently uncovered a new form (II/

III) of RubisCO genes from multiple uncultivated phyla

within the bacterial CPR and Archaea [1,10,11,19�,46,51].

Prior to these discoveries, these genes were identified

only in cultivated methanogens which all contained a

29 amino acid insertion. Sequences from CPR lineages

that were most closely related to methanogen RubisCOs

were not known to encode functional proteins based on

the considerable sequence divergence to characterized

proteins and the presence of a significantly longer inser-

tion (Dojkabacteria), different insertion (Absconditabac-

teria), or the lack of an insertion (Peregrinibacteria).

Using biochemical methods, the CP enzyme from a

Peregrinibacterial genome was shown to be catalytically

active, physiologically complementing autotrophic CO2-

dependent growth in a RubisCO deletion host strain.

Based on the integration of biochemical information

and metatranscriptomic data, it was suggested that some

bacterial CPR use RubisCO to fix carbon dioxide, not as

part of a Calvin-Benson Bassham cycle commonly found

in Bacteria, but as part of a nucleoside pathway formerly

known only in Archaea [51].

In a second example, single cell genomics revealed the

Bathyarchaeota contained a high number of extracellular

peptidases, and the metabolic capacity to harness energy
www.sciencedirect.com 
from amino acid catabolism [31]. However, many of the

peptidases present were only distant matches to known

proteins, making these annotations uncertain. Heterolo-

gous expression of one of these poorly annotated proteins,

named Bathyaminopeptidase, in E. coli confirmed pepti-

dase activity, and clearly identified substrate specificity

for cysteine residues [52]. This residue preference has not

been described outside mammals and was not annotated

accurately, demonstrating that CP harbor many new

surprises about enzyme functions that would not be

predicted by annotation alone.

Bringing CP into the cultivation light: thinking beyond

pure, rapidly growing laboratory cultures

One of the most globally important cultivation successes

involves the isolation of the first member of the Thau-

marchaeota (Nitrosopumilus maritimus), demonstrating

ammonia oxidation in the Archaea [53]. Here, six month

long incubation times and filtered aquarium water pro-

vided an environment that closely matched native carbon,

growth factors, and environmental conditions. A more

recent dark matter-to-isolate story involved the isolation

of a member of the OP10 [54], which were originally

detected in Yellowstone National Park Obsidian Pools

(OP) [55]. Colonies were isolated using a mineral salts

media with trace amounts of yeast extract, extended

incubation time, and most notably gellen instead of

traditionally used agar. Another OP10 organism was iso-

lated from aquatic plants by enriching in a dilute, minimal

media with ground plant root as the carbon source [56].

Genomic insight has also guided cultivation efforts. For

the cultivation of Saccharibacteria within the CPR, meta-

genomic predictions suggested the bacteria were capable

of anaerobic sugar fermentation and possibly host-

dependent [57]. He et al. (2015) cultivated Saccharibacteria

in the presence of an Actinomyces host using a media

specially crafted to reflect conditions of the oral cavity

and metagenomic insight including anoxic conditions and

amendment with human amino acids and high sucrose

concentrations [49��,58]. Based on microscopic visualiza-

tion, where multiple Saccharibacteria cells were attached

to the bacterial host, the organism was thought to be an

epibiont [49��].

In considering the domestication of other CP in the

laboratory, and highlighted by the Saccharibacteria suc-

cess, one must first acknowledge that many of these

organisms are not adapted to live in isolation. Genomic

insights suggest that for many CPR and some uncultivat-

ed archaeal phyla [1] hydrogen metabolism and auxotro-

phy are common features. Such a dependence on

hydrogen may be a barrier to isolation as these organisms

depend on the surrounding community to keep hydrogen

partial pressure low. Techniques used to cultivate obli-

gate syntrophs [59] or employing hydrogen catalysts may

offer methods for decoupling hydrogen dependency.
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Additionally, identifying possible hosts via co-correlation

of abundance patterns in environmental datasets and

using this biomass to enable the growth of CP lineages

may afford new opportunities for exploration in the

laboratory.

Additionally, many CP microorganisms are not optimized

to grow on laboratory timescales, rather adapted to low

flux subsurface environments. Consistent with this, some

CPR are inferred to have slow growth rates due to a small

number of ribosomes [3��]. In a scenario echoing the

success of the Thaumarchaeota [53], nutrient conditions

that more accurately reflect environmental carbon sub-

strates and concentrations combined with long incubation

times may favor the enrichment of currently uncultivated

lineages [60]. It can be difficult to replicate the natural

environment stably in the laboratory, thus an alternative

approach demonstrated by Epstein and colleagues may

enrich subsurface CP organisms in their environment

[61]. Here researchers used a diffusion chamber that

contains sediment-attached cells and allows access to

substrates and growth factors at environmentally relevant

concentrations. Growing organisms in stable consortia

with other bacteria or hosts, recreating the environmental

conditions in the laboratory or field, and combining these

approaches with higher throughput microcultivation

approaches may increase future physiological insights

from uncultivated lineages [62].

Concluding remarks
Until recently, culturability was a pre-requisite for ge-

nome sequencing, providing full access to the genetic and

physiologic information of individual organisms. The

advent of metagenomics and single cell genomics has

opened a new window into microbial diversity. Metabolic

predictions from these genomes provide a glimpse into

the metabolism of CP in the environment. While meta-

genomics can result in genomic supported hypotheses

about the overall community metabolism, it may not

always resolve pure genomes, instead leading to mosaic

or population resolved genomic bins. It also raises the

possibility that chimeric pathways are created within a

single reconstructed genome. Single cell genomics

ensures the purity of a genomic signal, but often provides

less comprehensive sampling, greatly hindering the abili-

ty to form metabolic hypotheses. Future work combining

the two methods, as well as improvements in each sepa-

rate method, should help to overcome these issues.

It is clear new sequencing methods have illuminated the

identity of organisms and their metabolic capacities,

placing them in community and ecosystem contexts.

However these genomes and their functions encoded

within have also provided new perspectives on microbial

evolution, taxonomy, and metabolism. As discussed

above, recent genomic sampling has reinvigorated

debates between the two and three domain models.
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Additionally, CP genomic sampling has enabled a new

microbial taxonomic nomenclature system, where an

isolated organism is no longer the prerequisite for naming

and publication. The presence of a high quality draft

genome (>95% complete) and a comprehensive descrip-

tion of the genome sequence, in conjunction with the

Candidatus designation, has been proposed for naming

uncultivated organisms [63]. Lastly, while sequenced

based predictions are quickly becoming the standard

for assessing biogeochemical roles catalyzed by microbes

in the environment, expanding these annotations to more

divergent lineages has highlighted the paucity of infor-

mation that can be gleaned from genomic sequencing

alone. The abundance of genes with unknown functions,

whether in E. coli or in genomes from the deepest

branches of the tree of life, highlight how much more

there is to learn about microbial biochemistry and metab-

olism. Future integrated methods, that not only include

single cell and metagenomics, but also activity and visual

measurements like other meta-omic tools (transcripts and

proteomics), isotope probing [64,65], high resolution mi-

croscopy [47,66–68], and alternative cultivation regimes

will afford more detailed investigations into the vast

universe of uncultivated microbes.
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